量子会纠缠的本质原因是什么?有没有合理的解释?

2024-05-20 16:19

1. 量子会纠缠的本质原因是什么?有没有合理的解释?

量子纠缠到底是什么?原来它才是罪魁祸首

量子会纠缠的本质原因是什么?有没有合理的解释?

2. 为什么会产生量子纠缠的现象

时间膨胀是说时间并不是永远以我们感受到的现在的这种速度进行的,它也会发生变化.它一般是和速度有关的.速度越快,越接近于极限速度,时间就会越慢(这里有个名词:极限速度.我们所处宇宙的极限速度是光速,但并不是所有的宇宙其极限速度都是光速,可能更快,也可能更慢).举个设想的例子说吧,假如有一个人一分钟的心跳是60下,当他高速运动时,如果速度足够大,他的心跳可能会变成40下,20下,甚至更慢.因为随速度的增加,他的时间变慢了,他自身的新陈代谢也随之变慢.这样,相对于他的时间就发生了膨胀. 我们通常会认为,光波的速度因与我们运动的方向相同或相反或取各种中间角度而有所不同。令人惊奇的是,爱因斯坦却认为事实上不会是这样。20世纪初,爱因斯坦就认识到,我们的时空观并不完善。他是通过分析电和磁相结合产生电磁辐射(例如光辐射)特性的规律得出这个结论的。他认为,如果光在一切测量中具有协调一致的特性的话,在物理学中光速必定扮演着主要角色。特别是,真空中的光速必须不变,无论光源和观察者做什么样的相对运动,真空光速总是每秒三十万千米。 17世纪,牛顿曾提出过一个相对性的经典说法。当时他主张,作为参照基准的参考框架,无论做什么样的匀速直线运动,都不会对实验(包括物理的运动)产生影响。爱因斯坦认为这种说法与他的电磁学理论格格不入,当他试图搞清楚以光速运动的观察者所看到的光波将会是什么样时,他遇到了纠缠不清的情景。于是他清醒地认识到,为了在物理学领域取得协调一致的答案,就不能把空间只是看成供我们生活居住的容器。它还必须具有某些特性,例如人们以高速运动时,时间尺度将会改变,同时,空间尺度也会改变。在这个意义上,空间和时间是缠绕在一起的,空间和时间原是同一件事物不同的相对表现形式。 牛顿的绝对时空就是哲学或人们通常意义上所感受的时空,即在每一刻,都对应整个宇宙的某一态。从牛顿的绝对时空看来,这星光传播过程中,时间就一直在变大,在膨胀。 现今世界上最具权威的美国《科学》杂志,最近一期一篇文章明确指出,宇宙膨胀不是光的多谱勒效应,是时空本身的膨胀,而实际天文观测证实的,包扩哈勃红移在内,都是时间膨胀的结果,其它都是围绕时间的膨胀展开的理论分析和推测。 分析时间的膨胀,就涉及时空本质的理解,就物理学而言,我们就有两种时空:牛顿的和爱因斯坦的。 牛顿的时空称绝对时空,表面看起来,它的时间和空间是毫不相关的,实际上,从它的引力所具有的无限大速度的假设,可以知道, 牛顿的绝对时空就是哲学或人们通常意义上所感受的时空,即在每一刻,都对应整个宇宙的某一态。从宇宙的各向同性和平滑性,知这一刻对一态虽然在观测上不可行,但理论和人们思维上却是可行的。空间的三维始终应对时间的一维,这是用思维观时空,是横向看时空,空间的三维和时间的一维一一对应,我称之为三一时空。三一时空的同时性并不是没有物理实质,如产生了量子纠缠的量子所具有的同时性。 爱因斯坦的时空称相对时空,它以观察者为核心,强调可观察,是用眼睛看时空,以光速为极限,将过去和现在联系在一起,是纵向看时空,时间和空间缠绕在一起,人称四维时空。爱因斯坦曾有过一个设想,当一个人以光速运动时,一道光在人眼前穿过,这个人所看到的光应为弯曲的。 时间的膨胀是观察者观察的结果,是四维时空的产物,时间倚观察者而变,观察者的时间代表着真实的唯一存在,是四维时空模型中时间的最大值;观察者的时间代表着此刻,若设这个时间为零,其它被观察体的时间都为负值。在观察者本身却无法发现时间膨胀的原因,必须横向看时空,用牛顿的绝对时空观,就能发现时间膨胀的原因。 例子:假设一星体离地球60亿年,星像分离的一刻,宇宙的态对应时间为T,10亿年过去,这星体的像走了10亿光年,宇宙的态对应时间为T+10;再10亿年过去,这星体的像又走了10亿光年,宇宙的态对应时间为T+20;最后,经过T+30,T+40,T+50,到达地球时,宇宙的态对应的时间为T+60亿年。从牛顿的绝对时空看来,这星光传播过程中,时间就一直在变大,在膨胀。 从横向思考时空,就会发现一个星体的像离开实体一刻起,在传播过程中,时间就一直在膨胀,直到被观察者接收为止。由于星体和观察者之间的时间膨胀是一定的,我们收到的星光的红移值就是一定的。 这时间膨胀现在被解释为空间的膨胀,即这星光经过的路程被延长,延长的原因是过去比较热,空间热膨胀,道理上应能说得过去,但事实是现在空间已经这么冷了,我们却发现时间膨胀在加速,时间膨胀解释为空间膨胀就说不过去了。空间性质的改变也能造成时间的延长,比如光不从空气中而从水中传播,接收者就会发现时间延长了。由热力学第二定律看,时间是不可逆的,空间尽管是真空,随时间的性质变化也是不可逆的。真空性质能有什么变化?真空的电场磁场引力场总在,电向磁的变化,引力的变化都是不可逆的。 宇宙的星系一直都在不断变化中,空间的性质也在不断变化中。就地球而言,地球在诞生时空间还没有大气,也不是一个蓝色星球;现在地球的温室效应,地球膨胀引起的空间的膨胀,都会产生空间性质的变化,同样会产生时间膨胀效应。空间本身由电向磁的转换,即由红向蓝的转变,就当然地造成红移,时间的膨胀。 也许这一切分析都是多余的,时间的膨胀就是时间的膨胀,从被观察物体到观察者,横向看时空,就有时间膨胀发生;太阳光到地球就有红移发生,不能也不要把时间变换成我们能理解的空间的什么东西,这样会犯错误的。道可道, 非常道; 时间是我们永远猜不完的谜。 时间膨胀是相对论效应的一个特别引人注意的例证,它是首先在宇宙射线中观测到的。我们注意到,在相对论中,空间和时间的尺度随着观察者速度的改变而改变。例如,假定我们测量正向着我们运动的一只时钟所表明的时间,我们就会发现它要比另一只同我们相对静止的正常走时的时钟走得慢些。另一方面,假定我们也以这只运动时钟的速度和它一同运动,它的走时又回到十分正常。我们不会见到普通时钟以光速向我们飞来,但是放射性衰变就像时钟,这是因为放射性物质包含着一个完全确定的时间标尺,也就是它的半衰期。当我们对向我们飞来的宇宙射线M作测量时,发现它的半衰期要比在实验室中测出的22微秒长很多。在这个意义上,从我们观察者的观点来看,M内部的时钟确实是走得慢些。时间进程拉长了,就是说时间膨胀了。 我们完全清楚,在平常的生活中看不出空间和时间有这种畸变。这是因为我们不涉及已接近光速运动的事物。事实上,相对论现象的特性由物体速度与光速平方之比这样一个比率来决定。当所研究的物体的运动速度超过光速的十分之一时,这个比率才变得重要,因为此时该比率增大到百分之一以上。这样的高速领域几乎只局限在高能物理学家们的经验中。由于我们通常不会涉及这样高的速度,所以狭义相对论的许多结论都使我们感到惊奇。实际上,这些结论确实有些复杂,但早已证实了狭义相对论的完美,并且在处理低速运动时又几乎严格地与我们所熟悉的物理规律一致。 时间膨胀对于未来的宇宙探索,旅行等都有巨大的作用,而它也不断出现在科幻小说家的笔下,并有了许多优秀的作品。 【时间膨胀效应的实验】 1、实验原理 使用传统所用的摆钟,要比较“动钟”和“静钟”的快慢,不可回避地存在一个“二次相遇”的难题;但是对于原子钟而言,这个问题已经不复存在。爱因斯坦在1952年为《狭义与广义相对论浅说》英译本第15版添加的“附录”中写道:“我们可以将发出光谱线的一个原子当作一个钟”(2-P106),实际上原子钟仅指原子本身而已,跟那结构相当复杂的“钟体”并没有关系。这样一来,我们就有了在实验室内完全静止的条件下比较两台“原子钟”快慢的前提。 只需要知道两台原子钟工作时的温度差异,就可以定性地获悉两台钟铯原子喷射速度的大小;如果知道两台钟铯原子喷射的具体速度,就不难定量地测出△ν和△V之间的对应关系。依据两个展开式可知:如果△ν∝△V,用(1)式解释是正确的;反之用(2)式解释是正确的。 选取两台频率一致性和长期稳定性均在10-13量级以上的铯钟,条件是己知两台钟工作时的温度、最好是铯束喷射速度存在较大差异。只需要将两台钟和比相仪或时间间隔器相联结,经过一定的时间间隔就可以依据记录曲线判定哪种解释是正确的。 实验结果可以证明:狭义相对论揭示出的横向多普勒频移,应该是频率增大、即向光谱的蓝端移动;正确的解释应该是“时间收缩”,或曰“运动时钟变快”。

3. 量子为什么会纠缠

量子纠缠与量子系统失序现象、量子信息丧失程度密切相关。量子纠缠越大,则子系统越失序,量子信息丧失越多;反之,量子纠缠越小,子系统越有序,量子信息丧失越少。因此,冯诺伊曼熵可以用来定量地描述量子纠缠,另外,还有其它种度量也可以定量地描述量子纠缠。






扩展资料:
量子纠缠所代表的在量子世界中的普遍量子关联则成为组成世界的基本的关联关系。或许用纠缠的观点来解释“夸克禁闭”之谜。当一个质子处于基态附近的状态时,它的各种性质可以相当满意地用三个价夸克的结构来说明。但是实验上至今不能分离出电荷为2e/3的u夸克或(-e/3)的d夸克,这是由于夸克之间存在着极强的量子关联,后者是如此之强,以至于夸克不能再作为普通意义下的结构性粒子。
通常所说的结构粒子a和b组成一个复合粒子c时的结合能远小于a和b的静能之和,a或b的自由态与束缚态的差别是不大的。而核子内的夸克在“取出”的过程中大变而特变,人们看到的只能是整数电荷的,介子等强子。同一个质子,在不同的过程中有不同的表现,在理解它时需要考虑不同的组分和不同的动力学。
参考资料来源:百度百科-量子纠缠
参考资料来源:百度百科-量子纠缠技术

量子为什么会纠缠

4. 为什么会出现量子纠缠

量子纠缠的产生于与量子系统失序现象、量子信息丧失程度密切相关。量子纠缠越大,则子系统越失序,量子信息丧失越多;
反之,量子纠缠越小,子系统越有序,量子信息丧失越少。因此,冯诺伊曼熵可以用来定量地描述量子纠缠;
另外,还有其它种度量可以定量描述量子纠缠。对于两体复合系统,这些纠缠度量较常遵守的几个规则为:纠缠度量必须映射从密度算符至正实数;假若整个复合系统不处于纠缠态,则缠度量为零。



扩展资料:对于纯态复合系统,纠缠度量必需约化为冯诺伊曼熵。
对于命定性的定域运算与经典通讯变换,纠缠度量不会增加。
对于两体纯态,只有冯诺伊曼熵能够量度量子纠缠,因为只有它能够满足某些量度量子纠缠必须遵守的判据。对于混合态,使用冯诺伊曼熵并不是能够量度量子纠缠的独有方法。
参考资料:百度百科----量子纠缠

5. 量子纠缠的本质是什么?

是关于量子力学理论最著名的预测。它描述了两个粒子互相纠缠,即使相距遥远距离,一个粒子的行为将会影响另一个的状态。当其中一颗被操作(例如量子测量)而状态发生变化,另一颗也会即刻发生相应的状态变化。
量子纠缠的本质就是量子的关联性。


那量子为什么会纠缠,其本质又是什么呢?
要想了解这一点,还是得提一下相对论,大家都知道当代物理学有两大基础 - 相对论和量子力学。在提出到现在这两个理论经受了很多严格的实验,其正确性是毫无疑问的。
而目前两个理论在根本架构上的冲突之处是:量子场论是建构在广义相对论的平坦时空下基本力的粒子场上。如果要透过这种相同模式来对引力场进行量子化,则主要问题是在广义相对论的弯曲时空架构,无法一如以往透过重整化的数学技巧来达成量子化描述,没办法用数学技巧得到有意义的有限值。
相对地,例如量子电动力学中对于光子的描述,虽然仍会出现一些无限大值,但为数较少可以透过重整化方法可以将之消除,而得到实验上可量到的、具有意义的有限值。


所以说广义相对论的修改方向是这两点:
1、引力的成因不是时空弯曲的。广义相对论的时空背景是弯曲的时空,但不是引力的成因。
2、引力的本源是时空。且描述引力量子化的时候一定要用“微分”思维来化解时空弯曲的尴尬。但引力不是时空弯曲造成的。引力可以说是一种时空性质。它反过来又会影响时空构建。且引力的作用是以光速传递的。
那么量子纠缠所引发的“超光速”的讨论是否对相对论理论构成了挑战呢?答案又是否定的!
别忘了量子力学的两大支柱互补原理【波和粒子在同一时刻是互斥的,但它们在更高层次上统一。】和不确定性原理【不确定性原理表明,粒子的位置与动量不可同时被确定】。
所以在量子力学中微观粒子并不是界限分明的,而是一种行动诡异的“概率云”。这些粒子不会只存在一个位置上,也不会只从一个路线到达另一个位置。我们一般用波函数来描述这些粒子的行为和特征。而两个有共同来源的微观粒子之间,只要有一个粒子发生变化,另一个就会发生变化。这种变化是立刻发生的,这就是量子纠缠。


大家有没有注意到,量子纠缠发生的机制是有限制的。并不是说随便两个粒子相距N千米距离远,都能发生量子纠缠。比如说地球上一个粒子不可能和100光年以外的一个粒子发生量子纠缠。
两个或两个以上的粒子发生量子纠缠必须在一个系统中,而且粒子是有共同来源的。
〈双光子系统〉比如:同一激光器产生光子场进行双偏分光,由于本身由同一激光器产生属`相干态'',那这二个分光产生的光子系统属〈相干纠缠态〉然后我们测量一个光子态某物理参量,会发现另一光子对应该物理参量也会同时改变,那么我们说对该〈双光子相干系统〉对该物理参量而言是一种量子纠缠态!
量子纠缠说明在两个或两个以上的稳定粒子间,会有强的量子关联。例如在双光子纠缠态中,向左(或向右)运动的光子既非左旋,也非右旋,既无所谓的x偏振,也无所谓的y偏振,实际上无论自旋或其投影,在测量之前并不存在。在未测之时,二粒子态本来是不可分割的。
那这样量子纠缠态产生原因就不难理解了,其实我们只要认为该双光子系统在分光前后是一个整体,那量子纠缠效应就很好理解了但实际上是这样吗?有人会说光子空间分离为二部分,怎么可能还是一个整体?关键点在于〈量子纠缠态〉的先决条件,双光子系统是一种相关联态,在没有解除相关联态前,它就是一个整体!


量子力学是非定域的理论,这一点已被贝尔不等式【任何定域隐变量理论不可能重复量子力学的全部统计预言。】的实验结果所证实,因此,量子力学展现出许多反直观的效应。量子力学中不能表示成直积形式的态称为纠缠态。
纠缠态之间的关联不能被经典地解释。所谓量子纠缠指的是两个或多个量子系统之间存在非定域、非经典的强关联。量子纠缠涉及实在性、定域性、隐变量以及测量理论等量子力学的基本问题,并在量子计算和量子通信的研究中起着重要的作用。
多体系的量子态的最普遍形式是纠缠态,而能表示成直积形式的非纠缠态只是一种很特殊的量子态。历史上,纠缠态的概念最早出现在1935年薛定谔关于“猫态”的论文中。
其实从量子纠缠本身的系统就可以看出它与互补原理和不确定性原理有紧密关系。不确定性原理体现了“联系”,即位置和动量的联系。互补的原理体现了“矛盾与统一。”两者结合的必然结果就是“纠缠”。”而且贝尔不等式是永久成立了,不可出现爱氏思考的那样。即通过隐变量理论可以完整解释物理系统所有可观测量的演化行为,从而避免掉任何不确信性或随机性。


而且干涉量子纠缠的时候,量子纠缠态会立即消除,也就是这种关联态函数的描述现象终止。
这也是说明了,量子纠缠的“局域”性。它不会像引力那样,具有“广域”性。但整个量子力学的非定域,其实也是一种“广域”,在这种“光域”下量子纠缠遵从一定的法则存在。
再通俗一点举例解释可以这样理解,两个或两个以上的粒子的量子纠缠态是一体的东西,在一个波函数描述之下,和距离无关。就好像是两个人坐一个跷跷板玩。A和B坐在上面的时候,就有了联系。A下去,B必然上来;相反B下去,A立刻上来。但我们不能说这种联系是超距的,也就是A和B之间的变化是超光速完成的。要知道这和A和B直接的距离“无关”,与他们之间的联系态有关。

量子纠缠的本质是什么?

6. 量子会相互纠缠,那么本质原因有哪些?

量子纠缠也就是量子系统中的一种现象,从理论上面来说是特别复杂的,有些人还是比较好奇,量子之所以会相互纠缠,那么本质原因是什么呢?一起来看一下。

一、量子会相互纠缠那么本质原因有哪些?
其实量子纠缠也就是量子力学所预言的一种比较特殊的现象,这种特殊现象也就是多个微观粒子的量子态,存在的一种相关联性,这种相关联性在不确定性原理之下就会表现出一种超距离的作用,之所以量子会相互纠缠,是因为守恒,无论是动量守恒还是角动量守恒,或者是各自守恒。

二、什么是量子纠缠呢?
1、其实量子纠缠也就是量子学里面描述我例子比较特性的一种概念吧,也就是说当几个例子在相互作用之后,原来各自的一些特性就会消失,那么在综合之后就成为一个整体的性质,即便是将这些粒子分开到比较远的距离,但是他们的性质依然是存在的。
2、比如说a和B是一对一直纠缠这个粒子,但是他们纠缠的状态一个是左旋,而另外一个是右旋,如果把他们分开在很遥远的不同的两个地方,那么只要测量a粒子的时候,在运动发生一些改变之后会成为右旋,但是在另外一方,B粒子一定也会变成左旋,那么在测量B粒子的时候,而a粒子也是同样的发生了一些变化。其实我国早在2016年发射的墨子号量子科学实验卫星中,就已经证实了这种属于纠缠状态的两个光子把它们分开1200km距离之后,这两个光子依然是保持着这种性质,所以量子纠缠这种诡异的特性让很多人产生了许多的猜测,有些人会认为最微小的粒子都有意识,所以才会有这种超距地作用。

7. 为什么会存在量子纠缠现象?

这个问题我要能跟你解释清楚,那我就可以得诺贝尔奖了,嘿,不过下一代通信枝术就是以它为基础的了。 量子纠缠(quantum entanglement),又译量子缠结,是一种量子力学现象,其定义上描述复合系统(具有两个以上的成员系统)之一类特殊的量子态,此量子态无法分解为成员系统各自量子态之张量积(tensor product)。 具有量子纠缠现象的成员系统们,在此拿两颗以相反方向、同样速率等速运动之电子为例,即使一颗行至太阳边,一颗行至冥王星,如此遥远的距离下,它们仍保有特别的关联性(correlation);亦即当其中一颗被操作(例如量子测量)而状态发生变化,另一颗也会即刻发生相应的状态变化。如此现象导致了“鬼魅似的远距作用”(spooky action-at-a-distance)之猜疑,彷佛两颗电子拥有超光速的秘密通信一般,似与狭义相对论中所谓的局域性(locality)相违背。这也是当初阿尔伯特·爱因斯坦与同僚玻理斯·波多斯基、纳森·罗森于1935年提出以其姓氏字首为名的爱波罗悖论(EPR paradox)来质疑量子力学完备性之缘由。 量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实,因此,量子力学展现出许多反直观的效应。量子力学中不能表示成直积形式的态称为纠缠态。纠缠态之间的关联不能被经典地解释。所谓量子纠缠指的是两个或多个量子系统之间存在非定域、非经典的强关联。量子纠缠涉及实在性、定域性、隐变量以及测量理论等量子力学的基本问题,并在量子计算和量子通信的研究中起着重要的作用。 多体系的量子态的最普遍形式是纠缠态,而能表示成直积形式的非纠缠态只是一种很特殊的量子态。历史上,纠缠态的概念最早出现在1935年薛定谔关于“猫态”的论文中。纠缠态对于了解量子力学的基本概念具有重要意义,近年来已在一些前沿领域中得到应用,特别是在量子信息方面。

为什么会存在量子纠缠现象?

8. 量子会相互纠缠,这是什么原因导致的?

两个粒子的外部信息是共同的,一个纠缠量子动了,另外一个纠缠粒子便会互动。它们的内外部信息是一体的,永远没有距离,彼此不分。量子纠缠是一个内外信息的问题,小粒子可以纠缠,大粒子也可纠缠,两个纠缠的粒子信息是一样的。如果来了一个新粒子和其中的一个发生纠缠,就必须信息同化,自然多余的信息就给了那落单的粒子了。在外来粒子取代原有粒子的同时,在外部信息改变中,粒子内部信息同时发生改变。

这些普朗克常数能充分发挥显著功效的现象称为量子现象,这种具备量子现象的外部经济粒子都能够当作是量子。因此量子并不是某类粒子的叫法,反而是具备量子现象的外部经济粒子的通称。次之大家必须搞清楚,外部经济粒子具备波粒二象性。这一特性不容置疑早已被很多的试验观测所确认。外部经济粒子跟大家宏观经济工作经验全球的化学物质不一样,他们既是化学物质也是波,并不是大家见到过的任何东西。全同粒子。这也是量子结构力学里边相同一类粒子的界定,例如全部的电子器件是全同粒子;全部的中子是全同粒子;全部的子是全同粒子。

量子纠缠是量子全球一种让人惊讶的现象。2个粒子的外界信息是一同的,一个纠缠量子动了,此外一个纠缠粒子便会互动交流。他们的外部环境信息是一体的,始终没有间距,彼此之间不区分。量子纠缠是一个内外信息的难题,小粒子能够纠缠,大粒子也可纠缠。2个纠缠的粒子信息是一样的。假如来啦一个新粒子和这其中的一个产生纠缠,就务必信息同化作用,务必一样。当然不必要的信息就给了那掉队的粒子了。在外界粒子替代原来粒子的与此同时,在外界信息更改中,粒子内部信息与此同时发生改变。

量子纠缠是量子系统软件的一种现象,基础理论很繁杂,说起清晰难以。以爱因斯坦为代表的经典物理学派觉得,量子结构力学里边的一些没法预测分析的“怪异”现象,如量子纠缠“妖魅一样的超距作用”,主要是其基础理论尚不完善,有一些多方面潜在性规律性都还没被我们所了解,他把这类规律性称之为隐变量,只需寻找这种隐变量,这种现象也不怪异了。争执的另一方叫“哥本哈根派”,其意味着角色有波尔,波恩,海森堡等,她们的基础理论被称作“哥本哈根阐释”。关键是坚持不懈观察客观事实,觉得粒子的波粒二象性,可变性基本原理,波函数塌缩,量子纠缠等奇特特点,是量子全球的原有特点。